Neural Radiance Fields (NeRF) is a popular view synthesis technique that represents a scene as a continuous volumetric function, parameterized by multilayer perceptrons that provide the volume density and view-dependent emitted radiance at each location. While NeRF-based techniques excel at representing fine geometric structures with smoothly varying view-dependent appearance, they often fail to accurately capture and reproduce the appearance of glossy surfaces. We address this limitation by introducing Ref-NeRF, which replaces NeRF's parameterization of view-dependent outgoing radiance with a representation of reflected radiance and structures this function using a collection of spatially-varying scene properties. We show that together with a regularizer on normal vectors, our model significantly improves the realism and accuracy of specular reflections. Furthermore, we show that our model's internal representation of outgoing radiance is interpretable and useful for scene editing.
翻译:神经辐射场( NeRF) 是一种广受欢迎的合成技术,它代表一个连续体积功能的场景,由提供体积密度和每个地点视景所依赖的散光度的多层光谱参数参数参数来参数化。 NeRF 技术在代表精细的几何结构方面非常出色,其外观差异很大,但往往无法准确捕捉和复制浮浮表面的外观。我们通过引入Ref-NeRF来解决这一局限性,该技术将NeRF的视光外射线参数化替换成一个反射光亮度和结构的表示,并使用空间变化场景特性的集合来表示这一功能。我们用普通矢量的正向器显示,我们的模型与普通矢量的正向器一道,极大地改进了镜面反射的现实性和准确性。此外,我们显示,我们的模型的外向弧度的内部表示方式是可以解释的,并且对现场编辑有用。