The optimal design of magnetic devices becomes intractable using current computational methods when the number of design parameters is high. The emerging physics-informed deep learning framework has the potential to alleviate this curse of dimensionality. The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. We derive the variational principle for 2-D parametric magnetostatic problems, and prove the existence and uniqueness of the solution that satisfies the equations of the governing physics, i.e., Maxwell's equations. We use a deep neural network (DNN) to represent the magnetic field as a function of space and a total of ten parameters that describe geometric features and operating point conditions. We train the DNN by minimizing the physics-informed loss function using a variant of stochastic gradient descent. Subsequently, we conduct systematic numerical studies using a parametric EI-core electromagnet problem. In these studies, we vary the DNN architecture trying more than one hundred different possibilities. For each study, we evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis. In an exhaustive non-parametric study, we observe that sufficiently parameterized dense networks result in relative errors of less than 1%. Residual connections always improve relative errors for the same number of training iterations. Also, we observe that Fourier encoding features aligned with the device geometry do improve the rate of convergence, albeit higher-order harmonics are not necessary. Finally, we demonstrate our approach on a ten-dimensional problem with parameterized geometry.
翻译:当设计参数数量高时,磁装置的最佳设计将使用目前的计算方法变得棘手。 正在形成的物理知情深深学习框架有可能减轻这种维度的诅咒。 本文的目的是调查物理学知情神经网络的能力, 以在二维(2-D)磁场问题背景下, 将磁场反应作为设计参数的函数来学习磁场反应。 我们的方法如下。 我们得出2- D 参数磁场问题的变异原理, 并证明符合管理物理等式的解决办法的存在和独特性。 即 Maxwell 的等式。 我们使用深神经网络( DNN) 来代表磁场作为空间的函数和总共10个参数, 描述二维(2- D)磁场磁场问题的设计参数。 我们用一种变异的梯度梯度梯度下降来培训 DNN 损失函数。 随后, 我们用一种偏差的四极电磁网的参数来进行系统化的数值研究。 在这些研究中, 我们将DNN 的相对精确度结构进行超过100次的精确度的比较, 最后, 我们用一个精确度分析来评估这些精确度的精确度。 我们用一项研究, 评估这些精确度的精确度的精确度 。 。