We study how networking corruptions--data corruptions caused by networking errors--affect video machine learning (ML) models. We discover apparent networking corruptions in Kinetics-400, a benchmark video ML dataset. In a simulation study, we investigate (1) what artifacts networking corruptions cause, (2) how such artifacts affect ML models, and (3) whether standard robustness methods can mitigate their negative effects. We find that networking corruptions cause visual and temporal artifacts (i.e., smeared colors or frame drops). These networking corruptions degrade performance on a variety of video ML tasks, but effects vary by task and dataset, depending on how much temporal context the tasks require. Lastly, we evaluate data augmentation--a standard defense for data corruptions--but find that it does not recover performance.
翻译:我们研究网络错误对视频机学习(ML)模式的影响如何造成网络腐败-数据腐败。我们发现在基调视频ML数据集“动因-400”中明显存在的网络腐败。在模拟研究中,我们调查:(1) 建立网络腐败的原因是什么,(2) 此类文物如何影响ML模型,(3) 标准稳健性方法能否减轻其负面影响。我们发现网络腐败导致视觉和时间艺术(即涂片颜色或框架滴落 ) 。这些网络腐败降低了各种视频ML任务的业绩,但影响因任务和数据集的不同而不同,取决于任务需要多少时间背景。最后,我们评估数据扩展-数据腐败的标准防御,但发现数据扩展-数据腐败的标准防御方法无法恢复业绩。