Resolving an open question from 2006, we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple $\mathcal{O}(\log^*n)$-round distributed algorithm in the LOCAL model of computation, that given a unit ball graph $G$ with $n$ vertices and a positive constant $\epsilon < 1$ finds a $(1+\epsilon)$-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju, which runs in $\mathcal{O}(\log^*n)$ rounds in the LOCAL model, but has a $\mathcal{O}(\log \Delta)$ bound on its lightness, where $\Delta$ is the ratio of the length of the longest edge to the length of the shortest edge in the unit ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing its round complexity, hence proposing the first spanner construction for unit ball graphs in the CONGEST model of computation. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersections per node. Lastly, we provide experimental results that confirm our theoretical bounds, and show an efficient performance from our distributed algorithm compared to the best known centralized construction.


翻译:解开2006年的开放问题,我们证明,在捆绑的双倍维度中,存在对单位球形图的轻量度约束度比量,并且我们在LOCAL计算模型中设计了一个简单的$mathcal{O}(log ⁇ n)美元四轮分布算法,给LOCAL计算模型中的单位球形1G$G$和正常数$epsilon < 1美元,发现一个1美元(log\delta)一美元,在最大度和亮度上都有恒定的界限,只使用2点的周边信息。这立即改进了最佳的先前亮度约束,Damian、Pandit和Pemmaraju的算法,在$\mathcal{O}(log ⁇ n)一回合中运行,在LOCOL模型中有一个单位球形的正数,但是在光度上找到一个(log\Delta)一美元,在最大度和亮度的深度上确定了我们最短的距离与最短的距离的比率, 在单位精度边缘上,我们开始的CEEEEEST的计算, 在C的计算中,我们将一个最接近的计算中进行一个最精确的计算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
0+阅读 · 2022年12月28日
Arxiv
0+阅读 · 2022年12月26日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员