We study the problem of weak recovery for the $r$-uniform hypergraph stochastic block model ($r$-HSBM) with two balanced communities. In HSBM a random graph is constructed by placing hyperedges with higher density if all vertices of a hyperedge share the same binary label. By analyzing contraction of a non-Shannon (symmetric-KL) information measure, we prove that for $r=3,4$, weak recovery is impossible below the Kesten-Stigum threshold. Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always possible above the Kesten-Stigum threshold. Consequently, there is no information-computation gap for these $r$, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the first impossibility result for HSBM weak recovery. As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in a related broadcasting on hypertrees (BOHT) model. While we show that BOHT's reconstruction threshold coincides with Kesten-Stigum for $r=3,4$, surprisingly, we demonstrate that for $r\ge 7$ reconstruction is possible also below the Kesten-Stigum. This shows an interesting phase transition in the parameter $r$, and suggests that for $r\ge 7$, there might be an information-computation gap for the HSBM. For $r=5,6$ and large degree we propose an approach for showing non-reconstruction below Kesten-Stigum threshold, suggesting that $r=7$ is the correct threshold for onset of the new phase. We admit that our analysis of the $r=4$ case depends on a numerically-verified inequality.
翻译:我们研究了使用两个平衡社区的$r$-uniform超图随机块模型($r$-HSBM)进行弱恢复的问题。在HSBM中,通过将密度更高的超边放置在所有顶点共享相同二进制标签的情况下来构造随机图。通过分析非Shannon(对称-KL)信息测量的收缩,我们证明在$r=3,4$时,Kesten-Stigum阈值以下是不可能进行弱恢复的。先前的研究Pal和Zhu(2021)发现,HSBM在Kesten-Stigum阈值以上总是可以进行弱恢复。因此,这些$r$不存在信息计算差距,这在一定程度上解决了Angelini等人(2015)的猜想。据我们所知,这是HSBM弱恢复的第一个不可能结果。像往常一样,我们将HSBM的非恢复研究简化为相关广播超树(BOHT)模型的非重构研究。虽然我们展示了BOHT的重构阈值与$r=3,4$的Kesten-Stigum相一致,但令人惊讶的是,我们证明对于$r\ge7$重构在Kesten-Stigum阈值以下也是可能的。这显示了参数$r$的一个有趣的相变,并表明对于$r\ge 7$,HSBM可能存在信息计算差距。对于$r=5,6$和大度数,我们提出了一种在Kesten-Stigum阈值以下显示不重构的方法,表明$r=7$是新阶段开始的正确阈值。我们承认,我们对$r=4$情况的分析依赖于经过数字验证的不等式。