Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two different public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to a registration CNN with label supervision.
翻译:由于缺少客观功能,非线性跨模式登记往往具有挑战性,而这些功能是配合协调的好替代物。 我们在此提出一种综合逐个登记方法,将这一问题转换成一种较容易的现代内部任务。 我们引入了在不需要完全一致的培训数据的领域之间对监督不力的图像翻译的登记损失。 这种损失在登记 U-Net 上加上了冷冻重量的资本, 将合成CNN 转化为理想的翻译。 我们用一种基于对比学习的结构来保持这一损失的制约。 对比学习防止了因超装而造成的模糊和内容转移。 我们将这种方法应用于MRI 切片(3D 历史学重建的关键步骤 ) 。 两种不同的公共数据集的结果显示,基于相互信息( 减少13 % 的里程碑错误) 和合成算法( 如 CycroGAN (减少11% ) ) 的登记有标签监督的CNN 。