We present and analyze a strongly conservative hybridizable discontinuous Galerkin finite element method for the coupled incompressible Navier-Stokes and Darcy problem with Beavers-Joseph-Saffman interface condition. An a priori error analysis shows that the velocity error does not depend on the pressure, and that velocity and pressure converge with optimal rates. These results are confirmed by numerical examples.
翻译:我们提出并分析一种非常保守的、可混合且不连续的Galerkin 限制元素方法,用于处理与 Beavers-Joseph-Saffman 界面条件相联的不可压缩的纳维尔-斯托克斯和达西问题。先验错误分析表明,速度错误并不取决于压力,速度和压力与最佳速率趋同。这些结果得到了数字示例的证实。