We present the first Learning-Augmented Binary Search Tree(BST) that attains Static Optimality and Working-Set Bound given rough predictions. Following the recent studies in algorithms with predictions and learned index structures, Lin, Luo, and Woodruff (ICML 2022) introduced the concept of Learning-Augmented BSTs, which aim to improve BSTs with learned advice. Unfortunately, their construction gives only static optimality under strong assumptions on the input. In this paper, we present a simple BST maintenance scheme that benefits from learned advice. With proper predictions, the scheme achieves Static Optimality and Working-Set Bound, respectively, which are important performance measures for BSTs. Moreover, the scheme is robust to prediction errors and makes no assumption on the input.
翻译:我们提出了第一个学习强化的二进制搜索树(BST ), 实现了静态优化和工作区间平衡(BST ), 并给出了粗略的预测。 最近对预测和学习指数结构的算法进行了研究之后, Lin, Luo 和 Woodruff (ICML 2022 ) 引入了学习强化的二进制搜索树概念, 目的是通过学习建议来改进 BST 。 不幸的是, 它们的构建在对投入的强健假设下只能带来静态的最佳性。 在本文件中, 我们提出了一个简单的 BST 维护计划, 受益于 学习的建议。 在适当的预测下, 计划实现了静态优化和工作区间连接, 它们是BST 的重要绩效衡量标准。 此外, 该计划对于预测错误和不做任何假设。