We develop a new approach to solve the nonlinear Richards equation based on the Kirchhoff transformation and localized radial basis function (LRBF) techniques. Our aim is to reduce the nonlinearity of the governing equation and apply LRBF methods for modeling unsaturated flow through heterogeneous soils. In our methodology, we propose special techniques which deal with the heterogeneity of the medium in order to apply the Kirchhoff transformation where we used the Brooks and Corey model for the capillary pressure function and a power-law relation in saturation for the relative permeability function. The new approach allows us to avoid the technical issues encountered in the Kirchhoff transformation due to soil heterogeneity in order to reduce the nonlinearity of the model equation. The resulting Kirchhoff-transformed Richards equation is solved using LRBF methods which have advantages in terms of computational cost since they don't require mesh generation. Furthermore, these LRBF techniques lead to a system with a sparse matrix which allows us to avoid ill-conditioned issues. To validate the developed approach for predicting the dynamics of unsaturated flow in porous media, numerical experiments are performed in one, two, and three-dimensional soils. The numerical results demonstrate the efficiency and accuracy of the proposed techniques for modeling infiltration through heterogeneous soils.
翻译:我们根据Kirchhoff变换和局部辐射基函数(LRBF)技术,制定了解决非线性理查方程式的新办法。我们的目标是减少管理方程式的不线性,并采用LRBF方法模拟不同土壤的不饱和流动。在方法方面,我们提出了处理介质异性的特殊技术,以便应用Kirchhoff变换法,即我们使用Brooks和Corey 模型进行毛细压力功能和对相对渗透功能的饱和关系。新办法使我们能够避免由于土壤异质性而在Kirchhoff变换中遇到的技术问题,以便减少模型等式的不线性。因此产生的Kirchhoff变异的Richard方程式使用LGBF方法解决了在计算成本方面的好处,因为后者不需要生成网状。此外,这些LMBF技术导致一个系统使用稀薄的矩阵,使我们能够避免出现不完善的问题。为了验证用来预测模型的Kirchhoff技术在基质变现基质的基质技术中出现的先进方法,通过不饱和进化的基质的土壤的土壤的模型,在模拟上展示一个测试中显示不饱和进化的基质的土壤的土壤的模型。