We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve PDE- and ODE-constrained optimization problems on scenes with a complex geometry. It support static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library, and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and in physical validations.
翻译:我们对接触和摩擦方面的基于时间的畸形问题采用一般的可变解决办法。我们的方法使用有限的元素分解,配有高序时间集成器,加上最近提出的处理接触和摩擦力量的递增潜在接触方法,用复杂的几何方法解决场面上受PDE和ODE限制的优化问题。它支持静态和动态问题,在物理问题描述中涉及的所有物理参数方面,包括形状、物质参数、摩擦参数和初始条件,有区别。我们的分析衍生的配方是有效的,前方模拟的间接间接数据小(非线性问题通常少于10%),与前方问题有许多相似之处,允许重新使用现有的前方模拟码的很多部分。我们在开放源的聚FEM图书馆之外实施我们的方法,并展示我们的解方对模拟结果和实物验证的设计、初步条件优化和材料估计的实用性。