In machine learning workflows, determining invariance qualities of a model is a common testing procedure. In this paper, we propose an automatic testing framework that is applicable to a variety of invariance qualities. We draw an analogy between invariance testing and medical image analysis and propose to use variance matrices as ``imagery'' testing data. This enables us to employ machine learning techniques for analysing such ``imagery'' testing data automatically, hence facilitating ML4ML (machine learning for machine learning). We demonstrate the effectiveness and feasibility of the proposed framework by developing ML4ML models (assessors) for determining rotation-, brightness-, and size-variances of a collection of neural networks. Our testing results show that the trained ML4ML assessors can perform such analytical tasks with sufficient accuracy.
翻译:在机器学习工作流程中,确定模型的不定性质是一个共同的测试程序。在本文件中,我们提议一个适用于各种不定性质的自动测试框架;我们在差异测试和医学图像分析之间作一个类比,并提议使用差异矩阵作为“图像”测试数据;这使我们能够使用机器学习技术,自动分析“图像”测试数据,从而便利ML4ML(机器学习机器);我们通过开发ML4ML模型(评估器)来确定神经网络集的旋转、亮度和大小变化。我们的测试结果表明,受过培训的 ML4ML评估器能够以足够准确的方式完成此类分析任务。