The ability to analyse and differentiate network protocol traffic is crucial for network resource management to provide differentiated services by Telcos. Automated Protocol Analysis (APA) is crucial to significantly improve efficiency and reduce reliance on human experts. There are numerous automated state-of-the-art unsupervised methods for clustering unknown protocols in APA. However, many such methods have not been sufficiently explored using diverse test datasets. Thus failing to demonstrate their robustness to generalise. This study proposed a comprehensive framework to evaluate various combinations of feature extraction and clustering methods in APA. It also proposed a novel approach to automate selection of dataset dependent model parameters for feature extraction, resulting in improved performance. Promising results of a novel field-based tokenisation approach also led to our proposal of a novel automated hybrid approach for feature extraction and clustering of unknown protocols in APA. Our proposed hybrid approach performed the best in 7 out of 9 of the diverse test datasets, thus displaying the robustness to generalise across diverse unknown protocols. It also outperformed the unsupervised clustering technique in state-of-the-art open-source APA tool, NETZOB in all test datasets.


翻译:自动协议分析(APA)对于大幅度提高效率和减少对人类专家的依赖至关重要。在APA中,有许多最先进的、不受监督的自动组合未知协议的方法。然而,许多这类方法尚未使用不同的测试数据集进行充分探讨。因此,未能展示其强性来概括性。这项研究提出了一个综合框架来评价APA中地物提取和集群方法的各种组合。它还提出了一个新颖的方法,用于自动选择地物提取的数据集依赖模型参数参数参数,从而改进性能。基于外地的新型象征性化方法的预期结果也导致我们提出了在APA中对未知协议的特性提取和组合采用新型的自动化混合方法。我们提议的混合方法在9个不同的测试数据集中的7个中表现最佳,从而展示了在各种未知协议中进行综合的强性。它也超越了在所有测试数据集中采用的最新开放源地APA工具(NETZOB)中未超超超的组合技术。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
14+阅读 · 2021年8月5日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员