Active perception approaches select future viewpoints by using some estimate of the information gain. An inaccurate estimate can be detrimental in critical situations, e.g., locating a person in distress. However the true information gained can only be calculated post hoc, i.e., after the observation is realized. We present an approach for estimating the discrepancy between the information gain (which is the average over putative future observations) and the true information gain. The key idea is to analyze the mathematical relationship between active perception and the estimation error of the information gain in a game-theoretic setting. Using this, we develop an online estimation approach that achieves sub-linear regret (in the number of time-steps) for the estimation of the true information gain and reduces the sub-optimality of active perception systems. We demonstrate our approach for active perception using a comprehensive set of experiments on: (a) different types of environments, including a quadrotor in a photorealistic simulation, real-world robotic data, and real-world experiments with ground robots exploring indoor and outdoor scenes; (b) different types of robotic perception data; and (c) different map representations. On average, our approach reduces information gain estimation errors by 42%, increases the information gain by 7%, PSNR by 5%, and semantic accuracy (measured as the number of objects that are localized correctly) by 6%. In real-world experiments with a Jackal ground robot, our approach demonstrated complex trajectories to explore occluded regions.
翻译:暂无翻译