Speckle filtering is generally a prerequisite to the analysis of synthetic aperture radar (SAR) images. Tremendous progress has been achieved in the domain of single-image despeckling. Latest techniques rely on deep neural networks to restore the various structures and textures peculiar to SAR images. The availability of time series of SAR images offers the possibility of improving speckle filtering by combining different speckle realizations over the same area. The supervised training of deep neural networks requires ground-truth speckle-free images. Such images can only be obtained indirectly through some form of averaging, by spatial or temporal integration, and are imperfect. Given the potential of very high quality restoration reachable by multi-temporal speckle filtering, the limitations of ground-truth images need to be circumvented. We extend a recent self-supervised training strategy for single-look complex SAR images, called MERLIN, to the case of multi-temporal filtering. This requires modeling the sources of statistical dependencies in the spatial and temporal dimensions as well as between the real and imaginary components of the complex amplitudes. Quantitative analysis on datasets with simulated speckle indicates a clear improvement of speckle reduction when additional SAR images are included. Our method is then applied to stacks of TerraSAR-X images and shown to outperform competing multi-temporal speckle filtering approaches. The code of the trained models is made freely available on the Gitlab of the IMAGES team of the LTCI Lab, T\'el\'ecom Paris Institut Polytechnique de Paris (https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/).
翻译:闪光过滤通常是分析合成孔径雷达(SAR)图像的先决条件。 在单一图像破碎领域已经取得了巨大的进步。 最新技术依靠深神经网络来恢复合成孔径雷达图像特有的各种结构和纹理。 提供SAR图像的时间序列有可能改进闪光过滤, 将同一区域不同的闪光实现情况结合起来。 对深神经网络的监督培训需要地面光谱/无孔径图像。 这些图像只能通过某种平均形式、 通过空间或时间整合间接获得, 并且不完善。 鉴于通过多时光谱过滤可以达到的极高质量恢复潜力, 需要绕过地面图象的局限性。 我们将最近针对单一视觉复杂的SAR图像的自我监督培训策略, 称为 MELIN, 以多时空过滤为例。 这就需要模拟空间和时间层面的统计依赖源, 以及真实和想象的图像组合之间, 通过多时序透镜谱过滤, 地面图像流的模型的模拟模型分析, 包括了我们之前的模拟变色图像的变色方法 。 当时, 我们的变色的变色的模型分析包括了现在的变色的变色图解方法 。 。