We propose a novel method for estimating heterogeneous treatment effects based on the fused lasso. By first ordering samples based on the propensity or prognostic score, we match units from the treatment and control groups. We then run the fused lasso to obtain piecewise constant treatment effects with respect to the ordering defined by the score. Similar to the existing methods based on discretizing the score, our methods yields interpretable subgroup effects. However, the existing methods fixed the subgroup a priori, but our causal fused lasso forms data-adaptive subgroups. We show that the estimator consistently estimates the treatment effects conditional on the score under very general conditions on the covariates and treatment. We demonstrate the performance of our procedure using extensive experiments that show that it can outperform state-of-the-art methods.
翻译:我们提出一种新的方法来估计基于引信底线的多种治疗效果。 我们首先根据倾向性或预测性分数来订购样本, 从而匹配处理和控制组的单位。 然后我们运行引信底线, 以获得与分数定义的定数有关的零碎的连续治疗效果。 与基于分数的现有方法相似, 我们的方法产生可解释的分组效应。 但是, 现有的方法可以先验地固定分组, 但我们的因果关系底线组成了数据适应分组。 我们显示, 估计者在非常一般的条件下, 以共变数和治疗为条件, 持续地估计得分数的治疗效果。 我们用广泛的实验来证明我们的程序的表现, 这表明它能够超越最先进的方法。