We propose an automatic method for pose and motion estimation against a ground surface for a ground-moving robot-mounted monocular camera. The framework adopts a semi-dense approach that benefits from both a feature-based method and an image-registration-based method by setting multiple patches in the image for displacement computation through a highly accurate image-registration technique. To improve accuracy, we introduce virtual inverse perspective mapping (IPM) in the refinement step to eliminate the perspective effect on image registration. The pose and motion are jointly and robustly estimated by a formulation of geometric bundle adjustment via virtual IPM. Unlike conventional visual odometry methods, the proposed method is free from cumulative error because it directly estimates pose and motion against the ground by taking advantage of a camera configuration mounted on a ground-moving robot where the camera's vertical motion is ignorable compared to its height within the frame interval and the nearby ground surface is approximately flat. We conducted experiments in which the relative mean error of the pitch and roll angles was approximately 1.0 degrees and the absolute mean error of the travel distance was 0.3 mm, even under camera shaking within a short period.


翻译:为了提高准确性,我们在改进过程中引入了虚拟反向绘图(IPM),以消除图像注册的视角效应。通过虚拟IPM的几何捆绑调整配制,对组合和运动进行了联合和有力的估计。与传统的视觉观察测量方法不同,拟议方法与常规视觉观察测量方法不同,没有累积错误,因为其直接估计在地面上产生和运动,因为它利用在地面移动机器人上安装的照相机配置,在那里,照相机的垂直运动与其在框架间隔内的高度相比是可忽略的,而附近的地面表面几乎是平坦的。我们进行了实验,在实验中,投放和滚动角度的相对中误差约为1.0度,而旅行距离的绝对中值误差为0.3毫米,甚至在短时期内的照相机摇晃下。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员