We provide a complete characterization of the identifiability of interaction kernels in mean-field equations for interacting particle systems. The key is to identify function spaces in which a probabilistic quadratic loss functional has a unique minimizer. We consider two data adaptive $L^2$ spaces, one with the Lebesgue measure and the other with an exploration measure intrinsic to the mean-field equation. For each $L^2$ space, the Fr\'echet derivative of the loss functional leads to a semi-positive integral operator, thus, the identifiability holds on the eigen-spaces with nonzero eigenvalues of the integral operator, and the function space of identifiably is the $L^2$-closure of the RKHS related to the integral operator. Furthermore, the identifiability holds on the $L^2$ spaces if and only if the integral operators are strictly positive. Thus, the inverse problem is ill-posed and regularization is necessary. In the context of truncated SVD regularization, we demonstrate numerically that the weighted $L^2$ space is preferable over the unweighted $L^2$ space because it leads to more accurate regularized estimators.
翻译:我们完整地说明在平均场粒子系统中互动内核的可识别性,关键在于确定一个概率性二次损耗功能具有独特最小化功能的功能空间。我们考虑两个数据适应性为2美元的空间,一个与Lebesgue测量仪,另一个与平均场方程内在的勘探措施相适应。对于每个L$2美元的空间,损失功能的Fr\'echet衍生物导致一个半积极的整体操作员,因此,在具有整体操作员非零值的非零二次损耗功能空间的可识别性,以及可识别性空间的功能空间是与整体操作员相关的RKHS关闭值$2美元。此外,如果并且只有当整体操作员完全肯定,则该特性将维持在$2美元的空间上。因此,问题并不正确,需要规范。在SVD正规化过程中,我们从数字上表明,加权的AR2美元空间的精确度高于正常值,因为加权的AL2美元空间的精确度高于美元。