In this work, our goal is to characterize the reliability of the solutions that can be obtained by the linear ordering problem (LOP) which is used to order $M$ objects from their pairwise comparisons. We adopt a probabilistic perspective, where the results of pairwise comparisons are modeled as Bernoulli variables with a common parameter which we estimate from the observed data. Estimation by brute-force enumeration has a prohibitive complexity of O($M!$) we thus reformulate the problem and introduce a concept of Slater's spectrum which generalizes Slater's index, and next, devising an efficient algorithm to find the spectrum, we lower the complexity to O($M^2 2^M$) which is manageable for moderate-size LOPs. Furthermore, with a minor modification of the algorithm, we are able to find all solutions of the LOP. Numerical examples on synthetic and real-world data are shown and the Python-implemented algorithms are publicly available.
翻译:在这项工作中,我们的目标是说明线性定序问题(LOP)所能获得的解决方案的可靠性。 线性定序问题(LOP)是用来从对等比较中订购美元对象的。 我们采用了一种概率性的观点,即对等比较的结果以伯努利变量为模型,我们根据观察到的数据估计了一个共同参数。 粗力计的估算具有令人望而却步的复杂性O( $M! $ ) 。 因此,我们重新定义了这一问题,并引入了斯拉特的频谱概念,将斯拉特的指数概括化,然后,设计出一种有效的算法来查找频谱,我们把复杂性降低到O( M$2 $ 2兆 $ ), 用于中度 LOPs 。 此外,在对算法稍作修改后,我们能够找到LOP的所有解决方案。 合成和真实世界数据的数值示例被展示出来, Python 执行的算法也被公诸于众。