Catastrophic forgetting is a notorious issue in deep learning, referring to the fact that Deep Neural Networks (DNN) could forget the knowledge about earlier tasks when learning new tasks. To address this issue, continual learning has been developed to learn new tasks sequentially and perform knowledge transfer from the old tasks to the new ones without forgetting. While recent structure-based learning methods show the capability of alleviating the forgetting problem, these methods start from a redundant full-size network and require a complex learning process to gradually grow-and-prune or search the network structure for each task, which is inefficient. To address this problem and enable efficient network expansion for new tasks, we first develop a learnable sparse growth method eliminating the additional pruning/searching step in previous structure-based methods. Building on this learnable sparse growth method, we then propose GROWN, a novel end-to-end continual learning framework to dynamically grow the model only when necessary. Different from all previous structure-based methods, GROWN starts from a small seed network, instead of a full-sized one. We validate GROWN on multiple datasets against state-of-the-art methods, which shows superior performance in both accuracy and model size. For example, we achieve 1.0\% accuracy gain on average compared to the current SOTA results on CIFAR-100 Superclass 20 tasks setting.
翻译:深神经网络(DNN)在学习新任务时会忘记早期任务的知识。 为了解决这个问题,我们开发了一种可学习的稀有增长方法,以相继学习新任务,从旧任务向新任务转移知识,而不会忘记。 虽然最近的基于结构的学习方法显示了减轻遗忘问题的能力,但这些方法是从一个冗余的全尺寸网络开始的,需要复杂的学习过程,以逐步成长和发芽,或为每项任务搜索网络结构,而这效率低下。为了解决这个问题,使网络能有效扩展新任务,我们首先开发一种可学习的稀有增长方法,消除以往基于结构的方法中额外的剪裁/搜索步骤。在这种可学习的稀薄增长方法的基础上,我们然后提议GROWN,一个新型端到端的不断学习框架,仅在必要时动态地发展模型。不同于以往所有基于结构的全尺寸方法,GROWN从一个小型种子网络开始,而不是一个完整的网络。为了解决这个问题,我们用多种数据集来验证GROWN,而不是为新任务的高效扩展网络,我们先行的稀有稀有稀有的稀有种方法,然后消除以往结构方法的稀有的稀有的稀有的稀有的稀有稀有稀有稀有稀有稀有稀有稀有的稀有稀有稀有稀有稀有稀有稀有稀有稀有稀有稀有稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有增长方法,我们,我们,我们,我们所学的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有增长方法,我们,我们,我们先行的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有的稀有增长种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种。我们。我们。我们