Graph neural networks (GNNs) are powerful models for many graph-structured tasks. Existing models often assume that a complete structure of a graph is available during training. In practice, however, graph-structured data is usually formed in a streaming fashion so that learning a graph continuously is often necessary. In this paper, we aim to bridge GNN to lifelong learning by converting a graph problem to a regular learning problem, so that GNN can inherit the lifelong learning techniques developed for convolutional neural networks (CNNs). To this end, we propose a new graph topology based on feature cross-correlation, namely, the feature graph. It takes features as new nodes and turns nodes into independent graphs. This successfully converts the original problem of node classification to graph classification, in which the increasing nodes are turned into independent training samples. In the experiments, we demonstrate the efficiency and effectiveness of feature graph networks (FGN) by continuously learning a sequence of classical graph datasets. We also show that FGN achieves superior performance in two applications, i.e., lifelong human action recognition with wearable devices and feature matching. To the best of our knowledge, FGN is the first work to bridge graph learning to lifelong learning via a novel graph topology. Source code is available at \url{https://github.com/wang-chen/LGL}.


翻译:图像神经网络(GNNs)是许多图形结构化任务的强大模型。 现有的模型通常假设在培训期间可以提供完整的图表结构。 但是,在实践中, 图表结构数据通常以流式方式形成, 以便不断学习图表。 在本文中, 我们的目标是将GNN 连接到终身学习, 将图形问题转换成经常性学习问题, 这样GNN就可以继承为动态神经网络(CNNs)开发的终身学习技术。 为此, 我们还提出一个新的图表表层学, 以特征交叉关系为基础, 即 特征图。 它以新的节点为特征, 并将节点转换成独立的图表。 这成功地将原节点分类问题转换成图形分类, 从而将不断增加的节点转化为独立的培训样本。 在实验中, 我们通过不断学习经典图表数据集的序列来展示地貌图形网络的效率和效力。 我们还表明, FGNEW在两种应用中取得了优异的性表现, 即, 即: 人类终身行动识别, 磨损设备, 将节点转换成独立的图表。 。 最高级的GNUI 学习 。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
13+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2019年4月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2022年1月28日
Arxiv
13+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2019年4月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员