Self-supervised Learning (SSL) provides a strategy for constructing useful representations of images without relying on hand-assigned labels. Many such methods aim to map distinct views of the same scene or object to nearby points in the representation space, while employing some constraint to prevent representational collapse. Here we recast the problem in terms of efficient coding by adopting manifold capacity, a measure that quantifies the quality of a representation based on the number of linearly separable object manifolds it can support, as the efficiency metric to optimize. Specifically, we adapt the manifold capacity for use as an objective function in a contrastive learning framework, yielding a Maximum Manifold Capacity Representation (MMCR). We apply this method to unlabeled images, each augmented by a set of basic transformations, and find that it learns meaningful features using the standard linear evaluation protocol. Specifically, we find that MMCRs support performance on object recognition comparable to or surpassing that of recently developed SSL frameworks, while providing more robustness to adversarial attacks. Empirical analyses reveal differences between MMCRs and representations learned by other SSL frameworks, and suggest a mechanism by which manifold compression gives rise to class separability.


翻译:自我监督的学习(SSL) 提供了一种战略,用于构建有用的图像表达方式,而不必依赖手贴标签。许多这类方法旨在将同一场景或对象的不同观点映射到演示空间的近点,同时使用一些限制来防止演示性崩溃。在这里,我们通过采用多种能力,从高效编码的角度重新审视了问题,这一措施根据线性可分离的物体的数量量量量度了显示质量,作为优化的效率衡量标准。具体地说,我们调整了多种能力,作为对比性学习框架中的一项客观功能使用,产生最大负能力代表(MMCR),我们将这种方法应用于未贴标签的图像,每个图像都通过一套基本转换得到增强,并发现它利用标准的线性评估协议学习有意义的特征。具体地说,我们发现MMCR支持与最近开发的SSL框架相近似或超过的物体识别性,同时为对抗性攻击提供更强性。Epicalal分析揭示了MCR和由其他SSL框架所学的演示力之间的差异,并提出了一种机制,使压升至等级。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
14+阅读 · 2021年3月10日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员