项目名称: PMMA-YAG:Ce3+纳米有机复合荧光发光材料的可控制备与光增强研究

项目编号: No.21276220

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 化学工业

项目作者: 关荣锋

作者单位: 盐城工学院

项目金额: 81万元

中文摘要: 荧光粉是实现LED白光照明的关键材料,但迄今为止可与器件集成并能批量制成功能元件的荧光材料技术未能取得突破。本课题以纳米级YAG:Ce为发光颗粒,以PMMA为基质材料,采用原位合成工艺制备纳米有机复合发光材料,并通过表面等离子技术高效增强发光强度与光取出效率。应用热力学及反应动力学原理研究纳米荧光发光颗粒与有机基质材料之间的相互作用规律,掌握纳米发光颗粒与基质之间的反应机理与结构特点,认识新型纳米有机复合发光材料光效、热稳定性与基质材料之间的内在联系,实现纳米有机复合发光材料的可控制备;构建基于金属表面等离子光增强与光取出的发光元件结构原型,应用刻蚀技术制备纳米尺度表面金属结构,以光增强与光取出效率为目标函数,应用光波电磁理论进行分析研究,揭示新型发光材料中光子的传输、能量的传递与增强规律,实现光的高效增强与取出;为真正实现高效稳定的纳米有机复合发光元件的可批量制造提供科学依据与技术基础。

中文关键词: 发光材料;可控制备;荧光增强;光色调控;YAG:Ce-PMMA

英文摘要: The phosphor powder is a key material of realizing white LED lighting, but so far,the fluorescent material technology to can be used integration with the LED device and to batch madding functional element failed to achieve a breakthrough.The project proposes, using nanometer YAG: Ce as luminescent particles, and with PMMA as matrix material, prepares nanometer composite organic light emitting material by using in situ synthesis process, and enhance light intensity and light extraction efficiency by using the surface plasma technology. Application principle of thermodynamics and kinetics of chemical reaction study the interactions rules between the nano luminescent particles and the organic matrix material, grasp the their reaction mechanism and the Interface structure characteristic, understand Internal relationship about the new type nanometer luminescent materials light effect, thermal stability with matrix material, achieve controlling synthesis of the nanometer organic composite luminescent materials.Constructing structure prototype of the luminescent element based on metal surface plasma light enhancement and light extraction, applying etching technology to prepare nano-scale surface metal structure, with light enhance and the light extraction efficiency as the objective function, the using lightwave elect

英文关键词: Luminescent material;Controllable preparation;Fluorescence enhancement;Lightcolor control;YAG:Ce-PMMA

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
251+阅读 · 2021年12月8日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
44+阅读 · 2021年4月9日
专知会员服务
51+阅读 · 2020年12月28日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
251+阅读 · 2021年12月8日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
44+阅读 · 2021年4月9日
专知会员服务
51+阅读 · 2020年12月28日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员