Deep learning models have achieved promising disease prediction performance of the Electronic Health Records (EHR) of patients. However, most models developed under the I.I.D. hypothesis fail to consider the agnostic distribution shifts, diminishing the generalization ability of deep learning models to Out-Of-Distribution (OOD) data. In this setting, spurious statistical correlations that may change in different environments will be exploited, which can cause sub-optimal performances of deep learning models. The unstable correlation between procedures and diagnoses existed in the training distribution can cause spurious correlation between historical EHR and future diagnosis. To address this problem, we propose to use a causal representation learning method called Causal Healthcare Embedding (CHE). CHE aims at eliminating the spurious statistical relationship by removing the dependencies between diagnoses and procedures. We introduce the Hilbert-Schmidt Independence Criterion (HSIC) to measure the degree of independence between the embedded diagnosis and procedure features. Based on causal view analyses, we perform the sample weighting technique to get rid of such spurious relationship for the stable learning of EHR across different environments. Moreover, our proposed CHE method can be used as a flexible plug-and-play module that can enhance existing deep learning models on EHR. Extensive experiments on two public datasets and five state-of-the-art baselines unequivocally show that CHE can improve the prediction accuracy of deep learning models on out-of-distribution data by a large margin. In addition, the interpretability study shows that CHE could successfully leverage causal structures to reflect a more reasonable contribution of historical records for predictions.


翻译:深层次的学习模型已经取得了对病人电子健康记录(EHR)的有希望的疾病预测绩效。然而,在I.I.D.假设下开发的大多数模型都未能考虑到不可知分布的变化,从而降低了深层学习模型对外部分配(OOOD)数据的普遍化能力。在这一背景下,将利用在不同环境中可能变化的虚假统计相关性,从而导致深层学习模型的次优性表现。在培训分布中存在程序与诊断之间的不稳关联,这可能导致历史健康记录与未来诊断之间的虚假关联。为解决这一问题,我们提议使用一种称为“Causal Heal Healcare Embideting (CHE)”的因果代表学习方法。 CHE的目的是通过消除诊断和程序之间的依赖性关系来消除虚假的统计关系。 我们引入了Hilbert-Schmidt 独立性标准(HSIC),以衡量嵌入式诊断与程序特征之间的独立程度。根据因果关系分析,我们进行了抽样加权技术,以摆脱这种具有误导性的关系,以便在不同环境中稳定地学习EHR的准确度。此外的精确度。此外,我们所提出的方法可以用来改进现有数据模型,可以用来显示一种状态的精确性模型。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员