Self-supervised learning (SSL) techniques have recently been integrated into the few-shot learning (FSL) framework and have shown promising results in improving the few-shot image classification performance. However, existing SSL approaches used in FSL typically seek the supervision signals from the global embedding of every single image. Therefore, during the episodic training of FSL, these methods cannot capture and fully utilize the local visual information in image samples and the data structure information of the whole episode, which are beneficial to FSL. To this end, we propose to augment the few-shot learning objective with a novel self-supervised Episodic Spatial Pretext Task (ESPT). Specifically, for each few-shot episode, we generate its corresponding transformed episode by applying a random geometric transformation to all the images in it. Based on these, our ESPT objective is defined as maximizing the local spatial relationship consistency between the original episode and the transformed one. With this definition, the ESPT-augmented FSL objective promotes learning more transferable feature representations that capture the local spatial features of different images and their inter-relational structural information in each input episode, thus enabling the model to generalize better to new categories with only a few samples. Extensive experiments indicate that our ESPT method achieves new state-of-the-art performance for few-shot image classification on three mainstay benchmark datasets. The source code will be available at: https://github.com/Whut-YiRong/ESPT.
翻译:暂无翻译