Tuning of model-based boosting algorithms relies mainly on the number of iterations, while the step-length is fixed at a predefined value. For complex models with several predictors such as Generalized Additive Models for Location, Scale and Shape (GAMLSS), imbalanced updates of predictors, where some distribution parameters are updated more frequently than others, can be a problem that prevents some submodels to be appropriately fitted within a limited number of boosting iterations. We propose an approach using adaptive step-length (ASL) determination within a non-cyclical boosting algorithm for GAMLSS to prevent such imbalance. Moreover, for the important special case of the Gaussian distribution, we discuss properties of the ASL and derive a semi-analytical form of the ASL that avoids manual selection of the search interval and numerical optimization to find the optimal step-length, and consequently improves computational efficiency. We show competitive behavior of the proposed approaches compared to penalized maximum likelihood and boosting with a fixed step-length for GAMLSS models in two simulations and two applications, in particular for cases of large variance and/or more variables than observations. In addition, the idea of the ASL is also applicable to other models with more than one predictor like zero-inflated count model, and brings up insights into the choice of the reasonable defaults for the step-length in simpler special case of (Gaussian) additive models.


翻译:以模型为基础的推进算法(GAMLSS)的推算方法主要取决于迭代次数,而跨长度则固定在预先确定的值上。对于带有若干预测器的复杂模型,如位置、规模和形状通用Additive模型(GAMLSS),预测器的不平衡更新,其中某些分配参数比其他参数更经常更新,可能是一个问题,使一些子模型无法在有限的推动迭次数中适当安装。我们提议在GAMLSS的非周期推算法中采用适应性的跨长度(ASL)确定方法,以防止这种不平衡。此外,对于高斯分布的重要特殊案例,我们讨论ASL的特性,并产生ASL的半分析形式,避免人工选择搜索间隔和数字优化,以找到最佳的跨长度,从而提高计算效率。我们在两个模拟和两个应用程序中采用适应性跨长度(ASLSSS)的定级递增级算方法,以防止这种不平衡。对于高斯分布的重要特例,我们讨论ASL的特性,并产生半分析形式,避免手工选择搜索间隔和数字,以找到最佳的间隔间距比其他的模型更精确的模型更精确的模型。我们表现出有竞争力,在两种模型中,在类似模型中,在更精确的模型中可以应用的模型中,也比其他的推。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员