Unsupervised foreground-background segmentation aims at extracting salient objects from cluttered backgrounds, where Generative Adversarial Network (GAN) approaches, especially layered GANs, show great promise. However, without human annotations, they are typically prone to produce foreground and background layers with non-negligible semantic and visual confusion, dubbed "information leakage", resulting in notable degeneration of the generated segmentation mask. To alleviate this issue, we propose a simple-yet-effective explicit layer independence modeling approach, termed Independent Layer Synthesis GAN (ILSGAN), pursuing independent foreground-background layer generation by encouraging their discrepancy. Specifically, it targets minimizing the mutual information between visible and invisible regions of the foreground and background to spur interlayer independence. Through in-depth theoretical and experimental analyses, we justify that explicit layer independence modeling is critical to suppressing information leakage and contributes to impressive segmentation performance gains. Also, our ILSGAN achieves strong state-of-the-art generation quality and segmentation performance on complex real-world data.
翻译:未经监督的地表地表地层分割旨在从各种背景中提取突出的物体,在这些背景中,基因反向网络(GAN)方法,特别是分层的GAN,显示了巨大的希望;然而,没有人类的注解,它们通常容易产生地表层和背景层,产生不可忽略的语义和视觉混淆,称为“信息渗漏”,导致生成的分离面罩明显变异;为缓解这一问题,我们提议一种简单而有效的明确层独立模型方法,称为独立层合成GAN(ILSGAN),通过鼓励差异来独立地表层和地表层生成。具体地说,它的目标是尽量减少地表层和背景的可见和看不见区域之间的相互信息,以刺激层间独立。通过深入的理论和实验分析,我们有理由认为,明确的层独立模型对于遏制信息渗漏至关重要,并有助于令人印象深刻的分化绩效收益。此外,我们的ILSGAN在复杂的真实世界数据上取得了强大的、最先进的生成质量和分化业绩。</s>