The tremendous recent progress in analyzing the training dynamics of overparameterized neural networks has primarily focused on wide networks and therefore does not sufficiently address the role of depth in deep learning. In this work, we present the first trainability guarantee of infinitely deep but narrow neural networks. We study the infinite-depth limit of a multilayer perceptron (MLP) with a specific initialization and establish a trainability guarantee using the NTK theory. We then extend the analysis to an infinitely deep convolutional neural network (CNN) and perform brief experiments
翻译:最近,在分析超参数化神经网络的培训动态方面所取得的巨大进展,主要集中于广泛的网络,因此不足以解决深度在深层学习中的作用。在这项工作中,我们提出了无限深但狭窄的神经网络的第一个可训练性保证。我们研究了具有特定初始化作用的多层感应器(MLP)的无限深度限制,并利用NTK理论建立了一个可训练性保证。我们然后将分析扩大到一个无限深层神经网络(CNN)并进行简单的实验。