The radial basis function (RBF) method is used for the numerical solution of the Poisson problem in high dimension. The approximate solution can be found by solving a large system of linear equations. Here we investigate the extent to which the RBF method can be accelerated using an efficient quantum algorithm for linear equations. We compare the theoretical performance of our quantum algorithm with that of a standard classical algorithm, the conjugate gradient method. We find that the quantum algorithm can achieve a polynomial speedup.
翻译:弧基函数( RBF) 方法用于高维Poisson 问题的数字解决方案。 大致的解决方案可以通过解决大型线性方程系统找到。 我们在这里调查RBF 方法在多大程度上可以使用线性方程的高效量子算法加速。 我们比较了我们量子算法的理论性能和标准古典算法的理论性能, 共制梯度法。 我们发现量子算法可以实现多元加速。