Quantum error correction codes play a central role in the realisation of fault-tolerant quantum computing. Chamon model is a 3D generalization of the toric code. The error correction computation on this model has not been explored so far. In this work, the Chamon model is turned to a non-CSS error correction code. Logical qubits are built by the construct of logical Pauli operators. The property of logical operators reveals the expressions of code distance. According to the topological properties of Chamon models, an error elimination algorithm is proposed. Based on the error elimination algorithm, we propose a global randomized error correction algorithm to decode Chamon models in every single-qubit depolarized channel. This decoding algorithm is improved by adding the pretreatment process, termed the probabilistic greedy local algorithm, which adapts to different kinds of high-dimensional models. The estimated threshold error rate for numerical experiment can be raised to $4.92\%$.
翻译:量子错误校正代码在实现容错量计算中发挥着核心作用。 查门模型是托尔码的三维概括化 。 目前尚未对这一模型的错误校正计算进行探索 。 在这项工作中, 查门模型转换为非 CSS 错误校正代码 。 逻辑二次曲线由逻辑保利操作员构建 。 逻辑操作员的属性揭示了代码距离的表达方式 。 根据查门模型的地形特性, 提议了一个消除错误算法 。 根据错误清除算法, 我们提议了一种全球随机错误校正算法, 以在每一个单平位脱极化的频道解码查门模型 。 这种解码算法通过添加预处理程序来改进, 称为概率贪婪本地算法, 适应不同的高维模型 。 数字实验的估计阈值错误率可提高到 4.92 美元 。</s>