Least-squares programming is a popular tool in robotics due to its simplicity and availability of open-source solvers. However, certain problems like sparse programming in the 0- or 1-norm for time-optimal control are not equivalently solvable. In this work we propose a non-linear hierarchical least-squares programming (NL-HLSP) for time-optimal control of non-linear discrete dynamic systems. We use a continuous approximation of the heaviside step function with an additional term that avoids vanishing gradients. We use a simple discretization method by keeping states and controls piece-wise constant between discretization steps. This way we obtain a comparatively easily implementable NL-HLSP in contrast to direct transcription approaches of optimal control. We show that the NL-HLSP indeed recovers the discrete time-optimal control in the limit for resting goal points. We confirm the results in simulation for linear and non-linear control scenarios.
翻译:最小平方程式是机器人中最受欢迎的工具,因为其简单易行,并且有开放源码求解器。 但是,某些问题,如在0或1北端为时间-最佳控制而编程稀少,不能等同溶解。 在这项工作中,我们提议采用非线级最低平方程式(NL-HLSP),用于对非线性离散动态系统进行时间-最佳控制。我们用一个额外术语来持续近似高端步骤功能,以避免梯度消失。我们使用一种简单的离散方法,在离散步骤之间保持状态和控制节奏常态。我们通过这种方式获得相对容易执行的NL-HLSP,与最佳控制的直接抄录方法形成对比。我们表明,NL-HLSP确实在固定目标点的极限中恢复了离性时间-最佳控制。我们确认线性和非线性控制情景的模拟结果。</s>