The problems of low light image noise and chromatic aberration is a challenging problem for tasks such as object detection, semantic segmentation, instance segmentation, etc. In this paper, we propose the algorithm for low illumination enhancement. KinD-LCE uses the light curve estimation module in the network structure to enhance the illumination map in the Retinex decomposed image, which improves the image brightness; we proposed the illumination map and reflection map fusion module to restore the restored image details and reduce the detail loss. Finally, we included a total variation loss function to eliminate noise. Our method uses the GladNet dataset as the training set, and the LOL dataset as the test set and is validated using ExDark as the dataset for downstream tasks. Extensive Experiments on the benchmarks demonstrate the advantages of our method and are close to the state-of-the-art results, which achieve a PSNR of 19.7216 and SSIM of 0.8213 in terms of metrics.
翻译:低光图像噪音和色相畸变问题对于物体探测、语义分解、例分解等任务来说是一个具有挑战性的问题。 在本文件中,我们提出了低照明增强的算法。 Kind-LCE使用网络结构中的光曲线估计模块来增强Retinex分解图像中的照明图,这提高了图像的亮度;我们提议了照明图和反射图聚合模块,以恢复恢复恢复的图像细节并减少详细损失。最后,我们增加了一个全部变异损失功能,以消除噪音。我们的方法使用GladNet数据集作为训练组,LOL数据集作为测试组,并使用ExDark作为下游任务的数据组加以验证。关于基准的广泛实验显示了我们方法的优势,并接近于最新的结果,在计量方面实现了19.7216 PSNR和0.8213的0.8213的PSNR和SSIM。