We present a method for performing tasks involving spatial relations between novel object instances initialized in arbitrary poses directly from point cloud observations. Our framework provides a scalable way for specifying new tasks using only 5-10 demonstrations. Object rearrangement is formalized as the question of finding actions that configure task-relevant parts of the object in a desired alignment. This formalism is implemented in three steps: assigning a consistent local coordinate frame to the task-relevant object parts, determining the location and orientation of this coordinate frame on unseen object instances, and executing an action that brings these frames into the desired alignment. We overcome the key technical challenge of determining task-relevant local coordinate frames from a few demonstrations by developing an optimization method based on Neural Descriptor Fields (NDFs) and a single annotated 3D keypoint. An energy-based learning scheme to model the joint configuration of the objects that satisfies a desired relational task further improves performance. The method is tested on three multi-object rearrangement tasks in simulation and on a real robot. Project website, videos, and code: https://anthonysimeonov.github.io/r-ndf/
翻译:我们从点云观测中直接提出一种执行任务的方法,其中涉及在任意情况下启动的新天体实例之间的空间关系。我们的框架为仅仅使用5-10个演示来指定新的任务提供了一个可伸缩的方法。物体重新排列正式成为寻找行动的问题,以在理想的对齐中配置对象中的任务相关部分。这种形式主义分三个步骤实施:为任务相关天体部分指定一个一致的本地协调框架,确定该协调框架在看不见天体实例上的位置和方向,以及执行使这些框架与理想的对齐行动。我们克服了从几个演示中确定任务相关的地方协调框架的关键技术挑战,我们开发了一个基于神经描述字段(NDF)的优化方法和一个单一的注解 3D 关键点。一个基于能源的学习计划,以模型模式构建能满足所期望的关联任务的对象的联合配置,进一步提高了性能。该方法在模拟和真实机器人上用三种多点调整后任务进行测试。项目网站、视频和代码:https://anthonysononov.github.io/r-ndf/ 。