Stationarity is a very common assumption in time series analysis. A vector autoregressive process is stationary if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. However, the stationary region has a highly complex geometry which impedes specification of a prior distribution. In this work, an unconstrained reparameterization of a stationary vector autoregression is presented. The new parameters are partial autocorrelation matrices, which are interpretable, and can be transformed bijectively to the space of unconstrained square matrices through a simple mapping of their singular values. This transformation preserves various structural forms of the partial autocorrelation matrices and readily facilitates specification of a prior. Properties of this prior are described along with an important special case which is exchangeable with respect to the order of the elements in the observation vector. Posterior inference and computation are described and implemented using Hamiltonian Monte Carlo via Stan. The prior and inferential procedures are illustrated with an application to a macroeconomic time series which highlights the benefits of enforcing stationarity and encouraging shrinkage towards a sensible parametric structure. Supplementary materials for this article are available in the ancillary files section.
翻译:在时间序列分析中,一个非常常见的假设是静止的。矢量自动递减过程是静止的,如果其特性方程式的根部位于单位圆外,并且只有其特性方程式的根部处于单元圆之外,它才是固定的,将自动递减系数矩阵限制在固定区域,但是,静止区域有一个非常复杂的几何方法,这有碍于对先前分布的规格。在这项工作中,介绍了对定态矢量自动递减进行未经限制的重新校准的参数。新的参数是部分自动递减矩阵,这是可以解释的,并且可以通过简单绘制其单值的图解图,将其双向未受限制的正方矩阵的空间进行双向转换。这种转换保留部分自动递减系数矩阵的各种结构形式,并便于对先前的特性进行说明。在描述之前的属性时,还有一个重要的特殊案例,可以与观察矢量的元素的顺序进行交换。通过斯坦的汉密尔顿·蒙特·卡洛描述和进行不合理的推断和计算。以前和推论程序用一个宏观经济时间序列来说明,该宏观经济时间序列中突出执行定定调的固定性和鼓励辅助的辅助文件。