Stationarity is a very common assumption in time series analysis. A vector autoregressive process is stationary if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. However, the stationary region has a highly complex geometry which impedes specification of a prior distribution. In this work, an unconstrained reparameterization of a stationary vector autoregression is presented. The new parameters are partial autocorrelation matrices, which are interpretable, and can be transformed bijectively to the space of unconstrained square matrices through a simple mapping of their singular values. This transformation preserves various structural forms of the partial autocorrelation matrices and readily facilitates specification of a prior. Properties of this prior are described along with an important special case which is exchangeable with respect to the order of the elements in the observation vector. Posterior inference and computation are described and implemented using Hamiltonian Monte Carlo via Stan. The prior and inferential procedures are illustrated with an application to a macroeconomic time series which highlights the benefits of enforcing stationarity and encouraging shrinkage towards a sensible parametric structure. Supplementary materials for this article are available in the ancillary files section.


翻译:在时间序列分析中,一个非常常见的假设是静止的。矢量自动递减过程是静止的,如果其特性方程式的根部位于单位圆外,并且只有其特性方程式的根部处于单元圆之外,它才是固定的,将自动递减系数矩阵限制在固定区域,但是,静止区域有一个非常复杂的几何方法,这有碍于对先前分布的规格。在这项工作中,介绍了对定态矢量自动递减进行未经限制的重新校准的参数。新的参数是部分自动递减矩阵,这是可以解释的,并且可以通过简单绘制其单值的图解图,将其双向未受限制的正方矩阵的空间进行双向转换。这种转换保留部分自动递减系数矩阵的各种结构形式,并便于对先前的特性进行说明。在描述之前的属性时,还有一个重要的特殊案例,可以与观察矢量的元素的顺序进行交换。通过斯坦的汉密尔顿·蒙特·卡洛描述和进行不合理的推断和计算。以前和推论程序用一个宏观经济时间序列来说明,该宏观经济时间序列中突出执行定定调的固定性和鼓励辅助的辅助文件。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员