In this paper, we develop a novel spatial variable selection method for scalar on vector-valued image regression in a multi-group setting. Here, 'vector-valued image' refers to the imaging datasets that contain vector-valued information at each pixel/voxel location, such as in RGB color images, multimodal medical images, DTI imaging, etc. The focus of this work is to identify the spatial locations in the image having an important effect on the scalar outcome measure. Specifically, the overall effect of each voxel is of interest. We thus develop a novel shrinkage prior by soft-thresholding the \ell_2 norm of a latent multivariate Gaussian process. It will allow us to estimate sparse and piecewise-smooth spatially varying vector-valued regression coefficient functions. For posterior inference, an efficient MCMC algorithm is developed. We establish the posterior contraction rate for parameter estimation and consistency for variable selection of the proposed Bayesian model, assuming that the true regression coefficients are Holder smooth. Finally, we demonstrate the advantages of the proposed method in simulation studies and further illustrate in an ADNI dataset for modeling MMSE scores based on DTI-based vector-valued imaging markers.
翻译:在本文中, 我们开发了一种新型的空间变量选择方法, 用于在多组环境下对矢量值图像回归进行比例分析。 这里, “ 矢量值图像” 指的是每个像素/ voxel 位置包含矢量值信息的图像数据集, 如 RGB 彩色图像、 多式医学图像、 DTI 成像等 。 这项工作的重点是确定图像中的空间位置, 对星标结果测量有重要影响。 具体地说, 每个 voxel 的总体效果是值得注意的。 因此, 我们开发了一种新型缩缩缩缩, 之前, 我们以软步保持 = ell_ 2 标准为潜在多变式高斯进程。 它将使我们能够估计稀有的和片位移动的矢量值回归系数功能, 如 RGB 彩色图像、 多式医学图像图像、 DTI 等 。 关于外观, 高效的 MMC 算法正在开发。 我们为基于 Bayesian 模型的变量选择设定参数和一致性设定真实的回归系数是平滑的。 最后, 我们展示了基于 AD- AS IM 的模型的模型的模型模型模型的模型的模型的模型, 并演示了基于 AD- AS IM 。