Ordinal regression with anchored reference samples (ORARS) has been proposed for predicting the subjective Mean Opinion Score (MOS) of input stimuli automatically. The ORARS addresses the MOS prediction problem by pairing a test sample with each of the pre-scored anchored reference samples. A trained binary classifier is then used to predict which sample, test or anchor, is better statistically. Posteriors of the binary preference decision are then used to predict the MOS of the test sample. In this paper, rigorous framework, analysis, and experiments to demonstrate that ORARS are advantageous over simple regressions are presented. The contributions of this work are: 1) Show that traditional regression can be reformulated into multiple preference tests to yield a better performance, which is confirmed with simulations experimentally; 2) Generalize ORARS to other regression problems and verify its effectiveness; 3) Provide some prerequisite conditions which can insure proper application of ORARS.
翻译:为预测输入刺激的主观平均意见分数(MOS),建议采用固定参考样本(ORARS)进行奥氏回归,以自动预测输入刺激的主观平均分数(MOS)。ORARS处理MOS预测问题,将测试样品与每个预分层基准样本配对。然后,使用经过培训的二进制分类器来预测哪个样本、测试或锚定在统计上更好。然后,使用二进制偏好决定的外观来预测测试样本的MOS。本文介绍了严格的框架、分析和实验,以证明ORARS优于简单的回归。这项工作的贡献是:1) 表明传统的回归可以重新拟订为多重偏好测试,以产生更好的性能,这通过实验性能得到确认;2) 将其他回归问题一般化ORS,并核实其有效性;3) 提供一些先决条件,以确保对ORARS的适当应用。