In this article, we introduce parallel-in-time methods for state and parameter estimation in general nonlinear non-Gaussian state-space models using the statistical linear regression and the iterated statistical posterior linearization paradigms. We also reformulate the proposed methods in a square-root form, resulting in improved numerical stability while preserving the parallelization capabilities. We then leverage the fixed-point structure of our methods to perform likelihood-based parameter estimation in logarithmic time with respect to the number of observations. Finally, we demonstrate the practical performance of the methodology with numerical experiments run on a graphics processing unit (GPU).
翻译:在本篇文章中,我们采用统计线回归和迭代统计后后线线化模式,在一般非古日文国家空间非线性非古日文国家空间模型中采用国家和参数估算的平行时间方法;我们还以平方形式重新拟订拟议方法,从而在保持平行能力的同时改善数字稳定性;然后我们利用我们方法的固定点结构,在对数时间对观测次数进行基于概率的参数估算;最后,我们用图形处理单元(GPU)进行的数字实验来证明该方法的实际表现。