Continual Test-Time Adaptation (CTTA) generalizes conventional Test-Time Adaptation (TTA) by assuming that the target domain is dynamic over time rather than stationary. In this paper, we explore Multi-Modal Continual Test-Time Adaptation (MM-CTTA) as a new extension of CTTA for 3D semantic segmentation. The key to MM-CTTA is to adaptively attend to the reliable modality while avoiding catastrophic forgetting during continual domain shifts, which is out of the capability of previous TTA or CTTA methods. To fulfill this gap, we propose an MM-CTTA method called Continual Cross-Modal Adaptive Clustering (CoMAC) that addresses this task from two perspectives. On one hand, we propose an adaptive dual-stage mechanism to generate reliable cross-modal predictions by attending to the reliable modality based on the class-wise feature-centroid distance in the latent space. On the other hand, to perform test-time adaptation without catastrophic forgetting, we design class-wise momentum queues that capture confident target features for adaptation while stochastically restoring pseudo-source features to revisit source knowledge. We further introduce two new benchmarks to facilitate the exploration of MM-CTTA in the future. Our experimental results show that our method achieves state-of-the-art performance on both benchmarks.


翻译:连续测试时自适应(CTTA)将目标域视为动态而不是静态的,是传统测试时自适应方法(TTA)的一种推广。本文探讨了多模态连续测试时自适应(MM-CTTA)作为CTTA的新扩展,应用于三维语义分割。MM-CTTA的关键在于在连续的域移动过程中适应于值得信赖的模态,同时避免灾难性遗忘,这是以前的TTA或CTTA方法所无法达到的。为了解决这个问题,我们提出了一种名为连续交叉模态自适应聚类(CoMAC)的MM-CTTA方法,从两方面解决了这个任务。一方面,我们提出了一种自适应的双阶段机制,通过在潜在空间中基于类别特征中心点之间的距离,对可靠的模态作出相应的关注,生成可靠的跨模态预测结果。另一方面,为了在测试时适应而不遗忘,我们设计了类别动量队列,用于捕获置信的目标特征以进行适应,同时随机恢复伪源特征以访问源知识。我们进一步引入了两个新的基准数据集,以便未来探索MM-CTTA。我们的实验结果表明,我们的方法在两个基准数据集上均取得了最先进的性能。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【CVPR2023】MSeg3D:面向自动驾驶的多模态3D语义分割
专知会员服务
15+阅读 · 2023年3月17日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
53+阅读 · 2021年3月31日
专知会员服务
109+阅读 · 2020年6月26日
CVPR 2022 | 元学习在图像回归任务的表现
PaperWeekly
1+阅读 · 2022年6月11日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【CVPR2023】MSeg3D:面向自动驾驶的多模态3D语义分割
专知会员服务
15+阅读 · 2023年3月17日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
53+阅读 · 2021年3月31日
专知会员服务
109+阅读 · 2020年6月26日
相关资讯
CVPR 2022 | 元学习在图像回归任务的表现
PaperWeekly
1+阅读 · 2022年6月11日
【CVPR 2020 Oral】小样本类增量学习
专知
16+阅读 · 2020年6月26日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员