We consider prophet inequalities under general downward-closed constraints. In a prophet inequality problem, a decision-maker sees a series of online elements and needs to decide immediately and irrevocably whether or not to select each element upon its arrival, subject to an underlying feasibility constraint. Traditionally, the decision-maker's expected performance has been compared to the expected performance of the prophet, i.e., the expected offline optimum. We refer to this measure as the Ratio of Expectations (or, in short, RoE). However, a major limitation of the RoE measure is that it only gives a guarantee against what the optimum would be on average, while, in theory, algorithms still might perform poorly compared to the realized ex-post optimal value. Hence, we study alternative performance measures. In particular, we suggest the Expected Ratio (or, in short, EoR), which is the expectation of the ratio between the value of the algorithm and the value of the prophet. This measure yields desirable guarantees, e.g., a constant EoR implies achieving a constant fraction of the ex-post offline optimum with constant probability. Moreover, in the single-choice setting, we show that the EoR is equivalent (in the worst case) to the probability of selecting the maximum, a well-studied measure in the literature. This is no longer the case for combinatorial constraints (beyond single-choice), which is the main focus of this paper. Our main goal is to understand the relation between RoE and EoR in combinatorial settings. Specifically, we establish a two-way black-box reduction: for every feasibility constraint, the RoE and the EoR are at most a constant factor apart. This implies a wealth of EoR results in multiple settings where RoE results are known.


翻译:在一个先知的不平等问题中,决策者看到了一系列在线元素,需要立即和不可撤销地决定是否在到达时选择每个元素,但必须受到基本的可行性限制。传统上,决策者的预期性能与先知的预期性能相比较,即预期离线最佳。我们称这一计量为期望值比值(或简而言之,RoE)。然而,RoE措施的一个主要限制是,它只能保证平均的最佳程度,而理论上,算法仍可能与实现的事后最佳值相比表现不佳。因此,我们研究替代性能措施。特别是,我们提出预期性比值(或简而言之,EoR),这是算法值和先知价值之间的预期性比值。这一计量产生理想的保证,例如,不断的EOFO标准意味着以常态确定前向离线的最佳程度,而我们总是有不断的概率。此外,在单选取的RE规则中,我们最接近于E的概率,我们选择了E的概率,在选择E-rocho标准中,最接近于E-cho的概率,我们选择了E-cour case case a core a colental strue is a pain a pain a strate deal decreal deal demin the made the made the made the made a made the made the made the made the made the made lexin the made a pro pro pro pro pro preal deqental decreal decreal decreal decreal decal dece a made.

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员