The orthogonality dimension of a graph $G$ over $\mathbb{R}$ is the smallest integer $k$ for which one can assign a nonzero $k$-dimensional real vector to each vertex of $G$, such that every two adjacent vertices receive orthogonal vectors. We prove that for every sufficiently large integer $k$, it is $\mathsf{NP}$-hard to decide whether the orthogonality dimension of a given graph over $\mathbb{R}$ is at most $k$ or at least $2^{(1-o(1)) \cdot k/2}$. We further prove such hardness results for the orthogonality dimension over finite fields as well as for the closely related minrank parameter, which is motivated by the index coding problem in information theory. This in particular implies that it is $\mathsf{NP}$-hard to approximate these graph quantities to within any constant factor. Previously, the hardness of approximation was known to hold either assuming certain variants of the Unique Games Conjecture or for approximation factors smaller than $3/2$. The proofs involve the concept of line digraphs and bounds on their orthogonality dimension and on the minrank of their complement.
翻译:以 $mathbb{R} 美元 表示的图形的正数维度是最小的整数 $1 美元,对于这一整数维量,人们可以给每个G$的顶点指定一个非零美元维度真实矢量,这样每两个相邻的脊椎就能得到正方向矢量。我们证明,对于每一个足够大的整数 $k$,对于每一个足够大的整数 $mathbb{R} 表示的整数维度, $\mathbb{R} 表示的最小整数维度是$1- o(1) 或至少2 ⁇ (1-o(1))\ cdot k/2} 美元。我们进一步证明,对于限制字段的正方位维度以及密切相关的最小值参数来说,这种硬性结果都是由信息理论中的指数编码问题驱动的。这尤其意味着, 将这些图形数量与任何恒定因素相近的硬性是很难的。 之前, 近相近的硬性是假设一定的变体值,, 要么是一定的美元, 。