In models of opinion dynamics, many parameters -- either in the form of constants or in the form of functions -- play a critical role in describing, calibrating, and forecasting how opinions change with time. When examining a model of opinion dynamics, it is beneficial to infer its parameters using empirical data. In this paper, we study an example of such an inference problem. We consider a mean-field bounded-confidence model with an unknown interaction kernel between individuals. This interaction kernel encodes how individuals with different opinions interact and affect each other's opinions. It is often difficult to quantitatively measure social opinions as empirical data from observations or experiments, so we assume that the available data takes the form of partial observations of the cumulative distribution function of opinions. We prove that certain measurements guarantee a precise and unique inference of the interaction kernel and propose a numerical method to reconstruct an interaction kernel from a limited number of data points. Our numerical results suggest that the error of the inferred interaction kernel decays exponentially as we strategically enlarge the data set.
翻译:在观点动态模型中,许多参数 -- -- 无论是以常数的形式还是以函数的形式 -- -- 在描述、校准和预测观点如何随时间变化方面发挥着关键作用。在审查观点动态模型时,使用经验性数据推断参数是有益的。在本文中,我们研究了这种推论问题的一个实例。我们考虑的是个人之间互动内核未知的中点约束性信任模型。这种互动内核编码了不同观点的个人如何相互作用和影响对方的观点。通常很难量化社会观点作为观察或实验的经验性数据进行衡量,因此我们假设现有数据的形式是对观点累积分布功能的部分观测。我们证明,某些测量保证了互动内核的准确和独特的推论,并提出了从有限数据点重建互动内核的数字方法。我们的数字结果表明,随着我们战略性地扩大数据集,推断的互动内核衰减的错误是指数性的。