In this paper, we focus on the demodulation/decoding of the complex modulations/codes that approach the Shannon capacity. Theoretically, the maximum likelihood (ML) algorithm can achieve the optimal error performance whereas it has $\mathcal{O}(2^k)$ demodulation/decoding complexity with $k$ denoting the number of information bits. Recent progress in deep learning provides a new direction to tackle the demodulation and the decoding. The purpose of this paper is to analyze the feasibility of the neural network to demodulate/decode the complex modulations/codes close to the Shannon capacity and characterize the error performance and the complexity of the neural network. Regarding the neural network demodulator, we use the golden angle modulation (GAM), a promising modulation format that can offer the Shannon capacity approaching performance, to evaluate the demodulator. It is observed that the neural network demodulator can get a close performance to the ML-based method while it suffers from the lower complexity order in the low-order GAM. Regarding the neural network decoder, we use the Gaussian codebook, achieving the Shannon capacity, to evaluate the decoder. We also observe that the neural network decoder achieves the error performance close to the ML decoder with a much lower complexity order in the small Gaussian codebook. Limited by the current training resources, we cannot evaluate the performance of the high-order modulation and the long codeword. But, based on the results of the low-order GAM and the small Gaussian codebook, we boldly give our conjecture: the neural network demodulator/decoder is a strong candidate approach for demodulating/decoding the complex modulations/codes close to the Shannon capacity owing to the error performance of the near-ML algorithm and the lower complexity.
翻译:在本文中, 我们侧重于使用香农能力的复杂调制/ 代码的降序/ 解码。 从理论上讲, 最大可能性( ML) 算法可以达到最佳错误性能, 而它具有$\ mathcal{O} (2 k) 的降序/ 解码复杂度, 以美元表示信息位数 。 最近深层次学习的进展为处理降序和解码提供了一个新的方向。 本文的目的是分析神经网络的降序/ 解码网络的可行性, 以演示/ 与香农能力相近的复杂度调制/ 复杂度, 并描述神经网络的错误性能和复杂性。 关于神经网络的降序调制( GAM), 我们使用金色调调调格式, 可以提供香农产能力接近的性能, 评估降色网络的降序。 观察到, 神经网络的低调调调调调能可以让基于ML方法的低度性能, 而我们从较低的低序调调调调调调调的当前调调调调调调调调调调调, 也无法描述出低调调低调调调调调调调调调调调, 。