3D hand pose estimation (HPE) is the process of locating the joints of the hand in 3D from any visual input. HPE has recently received an increased amount of attention due to its key role in a variety of human-computer interaction applications. Recent HPE methods have demonstrated the advantages of employing videos or multi-view images, allowing for more robust HPE systems. Accordingly, in this study, we propose a new method to perform Sequential learning with Transformer for Hand Pose (SeTHPose) estimation. Our SeTHPose pipeline begins by extracting visual embeddings from individual hand images. We then use a transformer encoder to learn the sequential context along time or viewing angles and generate accurate 2D hand joint locations. Then, a graph convolutional neural network with a U-Net configuration is used to convert the 2D hand joint locations to 3D poses. Our experiments show that SeTHPose performs well on both hand sequence varieties, temporal and angular. Also, SeTHPose outperforms other methods in the field to achieve new state-of-the-art results on two public available sequential datasets, STB and MuViHand.


翻译:3D 手形估计( HPE) 是一个从任何视觉输入中将手部的连接点定位为 3D 的过程。 HPE 近来因其在各种人-计算机互动应用中的关键作用而得到越来越多的关注。 最近的 HPE 方法展示了使用视频或多视图图像的好处, 从而可以建立更强大的 HPE 系统。 因此, 我们在本研究中提出一种新的方法, 来用变压器对手套( SeTHPose) (SeTHPose) 进行序列学习 。 我们的 seTHPose 管道开始从单个手图像中提取视觉嵌入。 我们随后使用变压器在时间或视图角度上学习相继环境, 并生成精确的 2D 手动联合位置 。 然后, 一个带有 U- Net 配置的图形进动神经网络 将 2D 联合位置转换为 3D 。 我们的实验显示, SeTHPose 在手序品种、 时间 和 角度上都很好地运行。 另外, SeTHPose 将其它方法在现场进行新的状态, 在两个公开连续数据集、 ST- HVI 和ST- B 和 TVI- B 上的新状态结果上。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员