Programmatically generating tight differential privacy (DP) bounds is a hard problem. Two core challenges are (1) finding expressive, compact, and efficient encodings of the distributions of DP algorithms, and (2) state space explosion stemming from the multiple quantifiers and relational properties of the DP definition. We address the first challenge by developing a method for tight privacy and accuracy bound synthesis using weighted model counting on binary decision diagrams, a state of the art technique from the artificial intelligence and automated reasoning communities for exactly computing probability distributions. We address the second challenge by developing a framework for leveraging inherent symmetries in DP algorithms. Our solution benefits from ongoing research in probabilistic programming languages, allowing us to succinctly and expressively represent different DP algorithms with approachable language syntax that can be used by non-experts. We provide a detailed case study of our solution on the binary randomized response algorithm. We also evaluate an implementation of our solution using the Dice probabilistic programming language for the randomized response and truncated geometric above threshold algorithms. We compare to prior work on exact DP verification using Markov chain probabilistic model checking. Very few existing works consider mechanized analysis of accuracy guarantees for DP algorithms. We additionally provide a detailed analysis using our technique for finding tight accuracy bounds for DP algorithms.
翻译:暂无翻译