Electronic health records (EHR) often contain sensitive medical information about individual patients, posing significant limitations to sharing or releasing EHR data for downstream learning and inferential tasks. We use normalizing flows (NF), a family of deep generative models, to estimate the probability density of a dataset with differential privacy (DP) guarantees, from which privacy-preserving synthetic data are generated. We apply the technique to an EHR dataset containing patients with pulmonary hypertension. We assess the learning and inferential utility of the synthetic data by comparing the accuracy in the prediction of the hypertension status and variational posterior distribution of the parameters of a physics-based model. In addition, we use a simulated dataset from a nonlinear model to compare the results from variational inference (VI) based on privacy-preserving synthetic data, and privacy-preserving VI obtained from directly privatizing NFs for VI with DP guarantees given the original non-private dataset. The results suggest that synthetic data generated through differentially private density estimation with NF can yield good utility at a reasonable privacy cost. We also show that VI obtained from differentially private NF based on the free energy bound loss may produce variational approximations with significantly altered correlation structure, and loss formulations based on alternative dissimilarity metrics between two distributions might provide improved results.
翻译:电子健康记录(EHR)往往包含有关个别病人的敏感医疗信息,对分享或释放EHR数据以用于下游学习和推断任务构成重大限制;我们使用正常流(NF)这一具有深重基因模型的大家庭,用不同隐私保障(DP)的保证来估计数据集的概率密度,从中生成隐私保护合成数据;我们将这一技术应用于包含肺高血压患者的EHR数据集;我们通过比较预测高血压状况的准确性和基于物理模型参数的变异后继体分布,评估合成数据的学习和推断效用;此外,我们使用非线性模型的模拟数据集来比较基于隐私保护合成数据的变异性发酵(VI)的结果,并根据原始非私人数据集的DP保证直接将NF私有化获得的保密性合成数据集;我们通过比较对NFF进行差异性私人密度估计所产生的合成数据的准确性和可产生良好的效用,以合理的隐私成本计算;我们还利用非线性模型对非线性模型进行模拟的模拟数据集进行差异性变化,根据私人变式的基质变的基质结构,可提供以自由的基质变价变制的基结果。