Monocular 3D object detection has become a mainstream approach in automatic driving for its easy application. A prominent advantage is that it does not need LiDAR point clouds during the inference. However, most current methods still rely on 3D point cloud data for labeling the ground truths used in the training phase. This inconsistency between the training and inference makes it hard to utilize the large-scale feedback data and increases the data collection expenses. To bridge this gap, we propose a new weakly supervised monocular 3D objection detection method, which can train the model with only 2D labels marked on images. To be specific, we explore three types of consistency in this task, i.e. the projection, multi-view and direction consistency, and design a weakly-supervised architecture based on these consistencies. Moreover, we propose a new 2D direction labeling method in this task to guide the model for accurate rotation direction prediction. Experiments show that our weakly-supervised method achieves comparable performance with some fully supervised methods. When used as a pre-training method, our model can significantly outperform the corresponding fully-supervised baseline with only 1/3 3D labels. https://github.com/weakmono3d/weakmono3d
翻译:单体 3D 对象探测已成为自动驱动使其易于应用的主流方法。 一个显著的优势是,它不需要在推断过程中使用激光雷达点云。 然而,目前大多数方法仍然依赖 3D 点云数据来标注培训阶段使用的地面真相。 培训和推断之间的这种不一致使得很难使用大型反馈数据并增加数据收集费用。 为了缩小这一差距,我们建议一种新的微弱监督的单体3D 反差检测方法, 它可以对模型进行仅标在图像上的 2D 标签的培训。 具体地说, 我们探索了这项任务的三种一致性, 即投影、 多视图和方向一致性, 并设计出一个基于这些组合的微弱监督性结构。 此外, 我们提议了一个新的 2D 方向标签方法, 以指导精确的旋转方向预测模型。 实验表明, 我们微弱监督的3D- 3D 反差方法可以与一些完全监督的方法相仿。 当用作培训前方法时, 我们的模型可以大大超越相应的完全超导的基线, 仅1/3 3/Dgivoram/ ams 。</s>