An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.
翻译:需要装载和满足摩擦和接触条件的线性弹性体的平衡可以通过第二种差异性不平等来描述,而不同的离散模型则具有通用等式的形式。对于数字解决方案,我们采用Gfrerer和Outrata(2019年)的半脱毛* 牛顿法。在数字解决方案中,与大多数可用的牛顿型融入方法不同的是,一种近似于单值的单值和多值部分。这是在限制(Morduchovich)调和(Morduchovich)的基础上进行的。在Tresca摩擦中,多值部分相当于摩擦和接触条件产生的交点功能的次偏差部分。然后将完整的3D离散问题缩小到接触边界。提供了半脱毛* 牛顿法的实施细节,并进行了数字测试,显示了其超级线性趋同和网状独立。