We consider systems of ordinary differential equations with multiple scales in time. In general, we are interested in the long time horizon of a slow variable that is coupled to solution components that act on a fast scale. Although the fast scale variables are essential for the dynamics of the coupled problem, they are often of no interest in themselves. Recently we have proposed a temporal multiscale approach that fits into the framework of the heterogeneous multiscale method and that allows for efficient simulations with significant speedups. Fast and slow scales are decoupled by introducing local averages and by replacing fast scale contributions by localized periodic-in-time problems. Here, we generalize this multiscale approach to a larger class of problems but in particular, we derive an a posteriori error estimator based on the dual weighted residual method that allows for a splitting of the error into averaging error, error on the slow scale and error on the fast scale. We demonstrate the accuracy of the error estimator and also its use for adaptive control of a numerical multiscale scheme.
翻译:我们考虑的是具有多种时间尺度的普通差异方程式系统。 一般来说, 我们对一个缓慢变量的长期时间范围感兴趣, 该变量与快速规模的解决方案组件相配合。 虽然快速规模变量对于同时出现的问题的动态至关重要, 但它们本身往往不感兴趣。 最近我们提出了适合多种不同规模方法框架的时跨尺度方法, 并允许以大量超速进行高效模拟。 快速和缓慢的尺度通过引入本地平均值和以局部定期问题取代快速规模贡献而脱钩。 在这里, 我们将这一多尺度方法推广到范围更大的问题类别, 特别是, 我们根据双加权剩余法得出一个后继错误估计器, 从而可以将错误分成平均误差、 慢尺度误差和快速尺度误差。 我们展示了错误估计器的准确性, 并用它来调整数字型多尺度计划的适应性控制 。