The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likelihood method, $C_p$ statistics, and generalized cross validation method, and the optimality criteria are based on e.g., the inefficiency, the expectation inefficiency and the risk. In this paper, we consider the regularized least squares regression problems with fixed number of regression parameters, choose the optimality criterion based on the risk, and study the a.o. of several cross validation (CV) based hyper-parameter estimators including the leave $k$-out CV method, generalized CV method, $r$-fold CV method and hold out CV method. We find the former three methods can be a.o. under mild assumptions, but not the last one, and we use Monte Carlo simulations to illustrate the efficacy of our findings.
翻译:文献中研究了具有不同最佳标准的各种超参数估计值的无光度最佳度(a.o.)在文献中研究了标准化最低正方形回归问题,估计值包括最大(边际)概率法、美元统计数字和通用交叉验证方法,最佳度标准以效率低下、预期效率低下和风险等为依据。在本文中,我们考虑了固定回归参数数的固定最低正方形回归问题,根据风险选择了最佳度标准,并研究了若干基于跨参数的验证值(CV)的a.o.,包括请假(k$-out CV)法、通用CV法、美元倍CV法和持有CV法。我们发现,在简单假设下,前三种方法可能是a.o.o.,但不是最后一种,我们用蒙特卡洛模拟来说明我们发现的结果的功效。