We propose robust methods to identify underlying Partial Differential Equation (PDE) from a given set of noisy time dependent data. We assume that the governing equation is a linear combination of a few linear and nonlinear differential terms in a prescribed dictionary. Noisy data make such identification particularly challenging. Our objective is to develop methods which are robust against a high level of noise, and to approximate the underlying noise-free dynamics well. We first introduce a Successively Denoised Differentiation (SDD) scheme to stabilize the amplified noise in numerical differentiation. SDD effectively denoises the given data and the corresponding derivatives. Secondly, we present two algorithms for PDE identification: Subspace pursuit Time evolution error (ST) and Subspace pursuit Cross-validation (SC). Our general strategy is to first find a candidate set using the Subspace Pursuit (SP) greedy algorithm, then choose the best one via time evolution or cross validation. ST uses multi-shooting numerical time evolution and selects the PDE which yields the least evolution error. SC evaluates the cross-validation error in the least squares fitting and picks the PDE that gives the smallest validation error. We present a unified notion of PDE identification error to compare the objectives of related approaches. We present various numerical experiments to validate our methods. Both methods are efficient and robust to noise.
翻译:我们提出强有力的方法,从特定一组杂乱的时间依赖数据中找出部分差异方程式(PDE)的根基。我们假设,管理方程式是指定字典中几个线性和非线性差异术语的线性组合。 吵吵的数据使得这种识别特别具有挑战性。 我们的目标是开发一种在噪音高水平下具有强性的方法, 并大致接近潜在的无噪音动态。 我们首先采用一个连续的分化差异(SDDD)计划, 以稳定在数字差异中放大的噪音。 SDD 有效地淡化了给定的数据和相应的衍生物。 其次, 我们提出了两种用于确定PDE的算法: 子空间追逐时间演变错误(ST) 和 子空间追逐交叉校验(SC) 。 我们的总战略是首先找到一个使用子空间追寻(SP)贪婪算法的候选数据集, 然后通过时间进化或交叉校验。 ST 采用多个解算数字时间进化(SDDD) 计划, 并选择产生最小进化错误的PDE 。 SC 评价最小方形的交叉校准错误, 和选择了当前PDE 校验算方法。</s>