In this paper, we carry out the numerical analysis of a nonsmooth quasilinear elliptic optimal control problem, where the coefficient in the divergence term of the corresponding state equation is not differentiable with respect to the state variable. Despite the lack of differentiability of the nonlinearity in the quasilinear elliptic equation, the corresponding control-to-state operator is of class $C^1$ but not of class $C^2$. Analogously, the discrete control-to-state operators associated with the approximated control problems are proven to be of class $C^1$ only. By using an explicit second-order sufficient optimality condition, we prove a priori error estimates for a variational approximation, a piecewise constant approximation, and a continuous piecewise linear approximation of the continuous optimal control problem. The numerical tests confirm these error estimates.
翻译:在本文中,我们对一个非悬浮准线性椭圆顶顶端控制问题进行了数字分析,在这种问题上,对应的状态方程差异值的系数对州变量来说是无法区分的。尽管准线性椭圆方程的非线性缺乏差异性,但相应的国家控制操作员为1美元类,而不是2美元类。类似地,与近似控制问题相关的离散控制至国家的操作员被证明仅为1美元类。通过使用明确的二阶充分最佳性条件,我们证明对变化近点的先验误差估计,一个小巧的常数近似,以及连续最佳控制问题的连续的条形线性直线近。数字测试证实了这些误差估计。</s>